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An unsuccessful attempt at Fermat’s Last Theorem

On March 1, 1847, Lamé told the Paris Academy of Sciences that
he had proved Fermat’s Last Theorem: there is no solution in Z+

to xn + yn = zn when n ≥ 3.

It suffices to treat n = p an odd prime. Then xp + yp factors:

zp = xp + yp = (x + y)(x + ζy) · · · (x + ζp−1y),

for ζ ∈ C where ζp = 1 and ζ 6= 1. For the numbers

a0 + a1ζ + · · ·+ ap−1ζ
p−1

where aj ∈ Z, Lamé wanted to use an analogue of the “coprime
power property” of Z+:

ab = cn and gcd(a, b) = 1 =⇒ a = xn and b = yn.

The proof of that property in Z+ uses unique factorization, so
Liouville asked Lamé why his setting has unique factorization.

In fact, there is not unique factorization there if p = 23.



Unique factorization in Z+

Theorem. Integers have unique factorization:

(i) each n > 1 is a product of primes p1p2 · · · pr (repetitions ok),

(ii) if p1p2 · · · pr = q1q2 · · · qs for prime pj & qk , then r = s and
pj = qj after relabeling.

Usually we collect like primes together:

n = pe11 · · · p
em
m (pj distinct primes, ej ≥ 1).

1 Who first established this?

2 What good is it?

3 How broadly (beyond Z) have results like this been found?



Prime numbers in ancient Greece

Prime numbers appeared in Books VII and IX of Euclid’s Elements,
presented entirely geometrically.

Book VII.
Defn. A prime p is bigger than 1 and 1 is it only (proper) factor.
Prop. 30: p | ab =⇒ p | a or p | b.
Prop. 31, 32: Every integer bigger than 1 has a prime factor.

Book IX.
Prop. 12: p | am =⇒ p | a.
Prop. 13: d | pm =⇒ d = pj where j ≤ m.
Prop. 14: p | lcm(p1, . . . , pr ) =⇒ p is one of p1, . . . , pr .
Prop. 20: There are infinitely many primes.

Observations.

Prop. 31, 32 are the nearest to existence of prime factorization.

Prop. 13, 14 are the nearest to its uniqueness.

Unique factorization was not important for Euclid.



Prime factorization later

Existence of prime factorization was shown numerous times later:

1 al-Farisi’s Memorandum [. . . ] on [. . . ] amicability (ca. 1300),

2 Prestet’s Nouveaux Elemens de Mathématiques (1689),

3 Euler’s Elements of Algebra (1770),

4 Legendre’s Théorie des Nombres (1798)

They all explicitly stated existence, while none proved uniqueness,
but al-Farisi and Prestet came close.

A common reason they cared about prime factorization was to list,
count, or sum all factors.

Example 1. Since 1881 = 32 · 11 · 19, its factors are 3a11b19c for
0 ≤ a ≤ 2, 0 ≤ b ≤ 1, and 0 ≤ c ≤ 1: 3 · 2 · 2 = 12 factors.

If n = pe11 · · · pemm then n has (e1 + 1) · · · (em + 1) factors. Without
unique factorization, this count would be wrong.



An analytic use of prime factorization

Example 2. Euler needed uniqueness of prime factorization in his
work on the zeta-function: for s > 1,∑

n≥1

1

ns
=
∏
p

1

1− 1/ps

=
1

1− 1/2s
1

1− 1/3s
1

1− 1/5s
1

1− 1/7s
· · ·

=

(
1 +

1

2s
+

1

4s
+ · · ·

)(
1 +

1

3s
+

1

9s
+ · · ·

)
· · ·

= 1 +
1

2s
+

1

3s
+

1

4s
+ · · ·



Prime factorization by Gauss

Gauss (1801) was the first to prove uniqueness, stating it as

Numerus compositus quicunque unico tantum modo in factores
primos resolvi potest.

Composite numbers are resolved into prime factors in only one way.

The proof uses p | ab =⇒ p | a or p | b, which goes back to Euclid.
Gauss criticized other authors for ignoring this property as well as
ignoring the need to prove uniqueness of prime factorization.



A new concept of integers

Gauss (1832) introduced “complex integers”

Z[i ] = {a + bi : a, b ∈ Z},

and basic number theory with them: primes, modular arithmetic,
Euclid’s algorithm, etc. We’ll focus on factoring in Z[i ].

7 + 4i = (1 + 2i)(3− 2i)

Here are two different factorizations of 10:

10 = 2 · 5 = (3 + i)(3− i).

That doesn’t violate unique factorization since

2 = (1 + i)(1− i), 5 = (2 + i)(2− i),

3 + i = (1 + i)(2− i), 3− i = (1− i)(2 + i),

so the factorizations of 10 did not use primes in Z[i ]. Compare:

210 = 6 · 35 = 10 · 21.

Primality depends on context: in Z[i ], 2 and 5 not prime, 3 is, . . .



Factoring into primes beyond Z

In Z[i ], ±1 & ±i are universal factors: α=(±1)(±α)=(±i)(∓iα).

Definition. Call nonzero p in Z[i ] prime if
(a) p 6= ±1 or ±i ,
(b) its only factors are ±1,±i ,±p,±ip.

The primes in Z[i ] are a mix of familiar and unfamiliar numbers:

±3, ±3i , ±7, ±7i , ±11, ±11i , ±19, ±19i , . . . ,

±(1± i), ±(2± i), ±(1± 2i), ±(2± 3i), ±(3± 2i), . . ..

Theorem. (Gauss) For each α 6= 0,±1,±i in Z[i ],

(i) α is a product of primes: α = p1p2 · · · pr (repetitions ok),

(ii) if p1p2 · · · pr = q1q2 · · · qs for prime pj & qk , then r = s and
pj = ujqj after relabeling, where uj = ±1,±i .

Example. 7 + 4i = (1 + 2i)(3− 2i) = (2− i)(2 + 3i), where
2− i = (−i)(1 + 2i) and 2 + 3i = (i)(3− 2i).



The coprime power property

In Z, ab = cn and gcd(a, b) = 1 =⇒ a = ±xn and b = ±yn.

Its proof uses unique factorization in Z, so carries over to Z[i ]:

αβ = γn and gcd(α, β) = 1 =⇒ α = uxn and β = vyn,

where uv = 1 (u, v are among ±1,±i).

Example. (Pythagorean triples) In Z+, suppose a2 + b2 = c2 with
gcd(a, b) = 1. Factor the left side in Z[i ]:

(a + bi)(a− bi) = c2.

Can show gcd(a + bi , a− bi) = 1, so coprime power property with
n = 2 says a + bi = ±(k + `i)2 or ±i(k + `i)2. Focus on 1st:

(k + `i)2 = k2 − `2 + (2k`)i =⇒ a = k2 − `2, b = 2k`

and c2 = a2 + b2 = (k2 + `2)2, so c = k2 + `2. A parametric

formula for all triples: (a, b, c) = (k2 − `2, 2k`, k2 + `2)



The coprime power property

αβ = γn and gcd(α, β) = 1 =⇒ α = uxn and β = vyn,

where uv = 1 (u, v are among ±1,±i).

Example. Show the only Z-solutions to y2 = x3 − 4 are (2,±2)
and (5,±11). Rewrite the equation in Z[i ] as

x3 = y2 + 4 = (y + 2i)(y − 2i).

If y odd, then gcd(y+2i , y−2i) = 1, so coprime power property

says y + 2i = (k + `i)3 . Can show same result if y even too.

y + 2i = (k + `i)3

= (k3 − 3k`2) + (3k2`− `3)i

= k(k2 − 3`2) + `(3k2 − `2)i .

Thus y = k(k2 − 3`2) and 2 = `(3k2 − `2), forcing ` = ±1 or ±2.
This leads to y = ±11, x = 5 and y = ±2, x = 2.



Failure of the coprime power property

Example. In Z[
√
−3] = {a + b

√
−3 : a, b ∈ Z},

(1 +
√
−3)(1−

√
−3) = 4 = 22.

The only common factors of 1±
√
−3 are ±1, but 1±

√
−3 6= ±�

since coefficient of
√
−3 isn’t even:

(a + b
√
−3)2 = (a2 − 3b2) + (2ab)

√
−3.

Since unique factorization implies the coprime power property, if
coprime power property breaks in Z[

√
−3] then so must unique

factorization, and in fact

4 = 2 · 2 = (1 +
√
−3)(1−

√
−3)

gives us two unrelated prime factorizations of 4 in Z[
√
−3].

Remark. For primes in Z or Z[i ], p | ab =⇒ p | a or p | b. But in
Z[
√
−3], 2 is prime, 2 | (1 +

√
−3)(1−

√
−3), and 2 - (1±

√
−3).



Another failure of the coprime power property

Polynomials in x have unique factorization up to order and scaling
by nonzero constants:

1−x2 = (1− x)(1 + x) = (2− 2x)
1+x

2
=

(
2

3
− 2

3
x

)(
3

2
+

3

2
x

)
.

But now consider the set T of all (trigonometric) polynomials in
sin θ and cos θ. These are the finite Fourier series:

sin3 θ + cos3 θ =
3

4
cos θ +

1

2
sin θ − 1

2
sin θ cos(2θ) +

1

4
cos(3θ).

Example. In T, rewrite sin2 θ + cos2 θ = 1 as

(1 + sin θ)(1− sin θ) = (cos θ)2,

where the only common factors of 1± sin θ are nonzero constants,
but 1± sin θ 6= ±� in T. So T does not have unique factorization!



The rational roots property

Unique factorization in Z implies the rational roots theorem: if
f (x) = xn + cn−1x

n−1 + · · ·+ c1x + c0 with cj ∈ Z, then

f (r) = 0 for r ∈ Q =⇒ r ∈ Z.

This holds in Z[i ] too: if f (x) = xn + cn−1x
n−1 + · · ·+ c1x + c0

with cj ∈ Z[i ], then f (r) = 0 for r ∈ Q[i ] =⇒ r ∈ Z[i ].

Nonexample. A root of x2 − x + 1 is 1
2 + 1

2

√
−3: it is in Q[

√
−3]

and not in Z[
√
−3]. This is a second reason Z[

√
−3] doesn’t have

unique factorization besides failure of the coprime power property.

Enlarge Z[
√
−3] to include the number ω = 1

2 + 1
2

√
−3:

Z[ω] = {a + bω : a, b ∈ Z}

contains Z[
√
−3] and does have the “rational roots property”: for

f (x) = xn + cn−1x
n−1 + · · ·+ c1x + c0 with cj ∈ Z[ω],

f (r) = 0 for r ∈ Q[ω] =⇒ r ∈ Z[ω].

In Z[ω], unlike Z[
√
−3], there is unique factorization.



Rational root property without unique factorization

In Z[
√
−5] = {a + b

√
−5 : a, b ∈ Z}, the rational roots property

holds: if f (x) = xn + cn−1x
n−1 + · · ·+ c1x + c0 with cj ∈ Z[

√
−5],

f (r) = 0 for r ∈ Q[
√
−5] =⇒ r ∈ Z[

√
−5].

But Z[
√
−5] does not have unique factorization:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

and
9 = 3 · 3 = (2 +

√
−5)(2−

√
−5) .

For nonsquare d in Z, set

Z[
√
d ] = {a + b

√
d : a, b ∈ Z}.

In Z[
√
d ] prime factorization exists, but often it is not unique, even

when the rational roots property holds in Z[
√
d ]:

Z[
√
−5], Z[

√
−6], Z[

√
10], Z[

√
26], Z[

√
79], . . . .



Rescue unique factorization by changing what is factored

Dedekind, building on work of Kummer, replaced the factorization
of elements with factorization of certain sets of elements.

Two properties of the multiples of a number γ in Z[
√
d ]:

closed under addition/subtraction: αγ ± βγ = (α± β)γ

absorb multiplication by everything: α(βγ) = (αβ)γ.

Definition. A subset I of Z[
√
d ] with those properties is an ideal:

x , y ∈ I =⇒ x ± y ∈ I , x ∈ I =⇒ αx ∈ I .

Example. For each γ ∈ Z[
√
d ], its multiples Z[

√
d ]γ are an ideal:

principal ideals.

Example. In Z[
√
−5], there are ideals not of the form Z[

√
−5]γ

(nonprincipal ideals) using all linear combinations of two elements:

I = Z[
√
−5]2 + Z[

√
−5](1 +

√
−5),

J = Z[
√
−5]3 + Z[

√
−5](1 +

√
−5),

J ′ = Z[
√
−5]3 + Z[

√
−5](1−

√
−5).



Multiplying ideals

Multiplication. For ideals I1 and I2, their product is the ideal

I1I2 = {x1y1 + · · ·+ xmym : xk ∈ I1, yk ∈ I2}.

Example. Z[
√
d ]γZ[

√
d ]γ′ = Z[

√
d ]γγ′.

Example. In Z[
√
−5] with

I = Z[
√
−5]2 + Z[

√
−5](1 +

√
−5),

J = Z[
√
−5]3 + Z[

√
−5](1 +

√
−5),

J ′ = Z[
√
−5]3 + Z[

√
−5](1−

√
−5),

we have
I 2 = Z[

√
−5]2, JJ ′ = Z[

√
−5]3,

IJ = Z[
√
−5](1 +

√
−5), IJ ′ = Z[

√
−5](1−

√
−5).

The unique factorization failure 2 · 3 = (1 +
√
−5)(1−

√
−5) in

Z[
√
−5] can be viewed as rearrangements of ideals: I 2JJ ′ = IJIJ ′.

It’s like 6 · 35 = 10 · 21 in Z being rearrangements of 2 · 3 · 5 · 7.



Factoring ideals

In Z, a | b ⇐⇒ aZ ⊃ bZ, e.g., 2Z ⊃ 6Z.

Dedekind called an ideal P in Z[
√
d ] prime if

(i) P 6= {0} or Z[
√
d ],

(ii) P ⊃ I1I2 =⇒ P ⊃ I1 or P ⊃ I2.

Ideals I , J, and J ′ in Z[
√
−5] on previous slide are all prime and

Z[
√
−5]2 = I 2, Z[

√
−5]3 = JJ ′, Z[

√
−5](1 +

√
−5) = IJ

are prime ideal factorizations.

Theorem. (Dedekind) Assume Z[
√
d ] has rational roots property.

The ideals in Z[
√
d ] have unique factorization into products of

prime ideals.

There is unique factorization of elements in Z[
√
d ] if and only

if there are no unexpected ideals: each ideal I is the multiples
of something: I = Z[

√
d ]γ.

What Dedekind proved is applicable beyond Z[
√
d ].



Extending what is possible

Ideals are yet another case where mathematics lets us do what at
first seems impossible.

Solve equations without classical solutions: complex numbers.

Intersect lines with no classical intersection: projective plane.

Uniquely factor what doesn’t have unique factorization: ideals.

Differentiate what has no classical derivative: distributions.

Dedekind’s ideals were one of three ways that the failure of unique
factorization for elements was fixed in the late 19th century: also
Kronecker’s divisors and Zolotarev’s semi-local rings.



Noether’s paper on abstract structure of ideal theory

Noether worked on ideals in the 1920s. Always looked for algebraic
concepts behind pages of computations and formulas.

1921: Primary ideal decomposition (Lasker–Noether theorem)

1927: Says when unique factorization of ideals occurs.



Noether’s paper on abstract structure of ideal theory

Here is a version of Noether’s result.

Theorem. An integral domain has unique factorization of ideals if
and only if
(1) it has an analogue of the rational roots property,
(2) every increasing sequence of ideals in it stabilizes,
(3) its prime ideals have no containment relations.

Example. The set T of trigonometric polynomials fits all of these
conditions, so T has unique factorization of ideals.

How does (1 + sin θ)(1− sin θ) = (cos θ)2, as a counterexample to
unique factorization of elements in T, get saved using ideals in T?

The ideals P = T(1 + sin θ)+Tcos θ and Q = T(1− sin θ)+Tcos θ
turn out to be prime ideals and

P2 = T(1 + sin θ), Q2 = T(1− sin θ), PQ = Tcos θ,

so (1 + sin θ)(1− sin θ) = (cos θ)2 turns into P2Q2 = (PQ)2.



Using ideals

1. When Z[
√
d ] has unique factorization of ideals, its elements

have a coprime power property for restricted exponents.

Example. For nonzero α and β in Z[
√
−5] such that Z[

√
−5]α

and Z[
√
−5]β are relatively prime ideals,

αβ = γn =⇒ α = ±xn and β = ±yn

when n is odd. (It fails for (2 +
√
−5)(2−

√
−5) = 32.)

2. For each A in Mn(Q), A and A> are conjugate: A> = UAU−1

for an invertible U in Mn(Q). This need not be true in Mn(Z)!

Example. The matrix

A =

(
1 −5
3 −1

)
is conjugate to A> in M2(Q) but not in M2(Z). Its characteristic
polynomial is x2 + 14 and A is found using ideals in Z[

√
−14].



Using ideals

3. For prime p and pth root of unity ζ 6= 1 in C, the numbers

a0 + a1ζ + · · ·+ ap−1ζ
p−1

where aj ∈ Z have unique factorization of ideals for all p but not
unique factorization of elements for p ≥ 23 (Uchida, Montgomery).

4. In geometric settings, ideals are related to line bundles. The
elements of T are polynomial functions on the unit circle, and T
having ideals that are not just multiples of something is related to
the circle having a nontrivial line bundle: the Möbius strip.



Questions?


